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Abstract

We present an updated analysis of the rare decay KL → π0µ+µ− within the Standard
Model. In particular, we present the first complete calculation of the two-photon CP-
conserving amplitude within Chiral Perturbation Theory, at the lowest non-trivial order.
Our results confirm previous findings that the CP-conserving contribution to the decay
rate cannot be neglected. By means of an explicit two-loop calculation, we show that
this contribution can be estimated with sufficient accuracy compared to the CP-violating
terms. We predict B(KL → π0µ+µ−)SM = (1.5 ± 0.3) × 10−11, with approximately equal
contributions from the CP-conserving component, the indirect-CP-violating term, and
the interesting direct-CP-violating amplitude. The error of this prediction is mainly of
parametric nature and could be substantially reduced with better data on the KS →
π0ℓ+ℓ− modes. The Standard Model predictions for various differential distributions and
the sensitivity to possible new-physics effects are also briefly discussed.

1 Introduction

The rare decays KL → π0ℓ+ℓ− are among the most interesting channels for precision
studies of CP violation and flavour mixing in the ∆S = 1 sector [1]. The decay am-
plitudes of these processes have three main ingredients: i. a clean direct-CP-violating
component determined by short-distance dynamics; ii. an indirect-CP-violating (CPV)
term due to KL-KS mixing; iii. a long-distance CP-conserving (CPC) component due to
two-photon intermediate states. Although generated by very different dynamics, these
three components are of comparable size within the Standard Model (SM). The precise
knowledge about their magnitude (particularly of ii. and iii.) has substantially improved
in the recent past [2]. This improvement has been made possible by the observation of the
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KS → π0ℓ+ℓ− decays [3, 4] and also by precise experimental studies of the KL → π0γγ
diphoton spectrum [5, 6].

The main difference of the KL → π0µ+µ− mode with respect to the electron channel,
which has recently been re-analysed in Ref. [2], is the two-photon CPC contribution. The
latter corresponds to transitions into final states where the lepton pair has JCP = 0++

or 2++. The JCP = 0++ case can safely be neglected in the electron mode, because of the
strong helicity suppression [7, 8, 9]. On the contrary, the KL → π0(γγ)J=0 → π0(ℓ+ℓ−)J=0

amplitude generates the by far dominant CPC contribution in the muon mode [8, 10]. The
main purpose of the present paper is a detailed analysis of this CPC amplitude, which is
a fundamental ingredient to obtain a reliable SM prediction for the entire KL → π0µ+µ−

decay width.
Chiral Perturbation Theory (CHPT) provides a natural framework to analyse the CP-

conserving KL → π0µ+µ− amplitude. Here the first non-trivial contribution arises at
O(p4) from two-loop diagrams of the type KL → π0(P+P−) → π0(γγ) → π0µ+µ−, where
P = π, K. This structure is very similar to the two-loop KS → µ+µ− amplitude analysed
by Ecker and Pich [11]: there are no counterterms at O(p4) and the sum of all loop
diagrams yields a finite unambiguous result. The KS → µ+µ− amplitude of Ref. [11] has
indeed been used by Heiliger and Sehgal [10] to estimate the dominant pion-loop terms in
KL → π0µ+µ−. These authors extracted from the KS → µ+µ− amplitude an appropriate
electromagnetic form factor, describing the (π+π−)J=0 → (γγ) → µ+µ− transition, and
used it in conjunction with a constant KL → 3π vertex to estimate the KL → π0µ+µ−

amplitude. Although quite reasonable from a phenomenological point of view, this result
is not fully justified within CHPT.

By means of an explicit two-loop calculation, we show that the factorization of the
electromagnetic form factor holds exactly at O(p4), independently of the structure of the
KL → 3π amplitude, and independently of the nature of the charged pseudoscalar meson
inside the loop. We are then able to present the first complete O(p4) estimate of the CPC
KL → π0µ+µ− amplitude, with the correct chiral dynamics of the KL → 3π vertex and
the missing kaon-loop contribution. In order to check the stability of this result, we also
performed a detailed study of possible higher-order contributions, taking into account
the recent experimental information on the KL → π0γγ decay distribution. The main
outcome of this analysis is a reliable theoretical estimate of the ratio

Rγγ =
Γ(KL → π0ℓ+ℓ−)CPC

Γ(KL → π0γγ)
. (1)

Despite numerator and denominator receive, separately, large corrections beyond O(p4),
Rγγ turns out to be a rather stable quantity, with a theoretical error conservatively esti-
mated to be around 30%.

Combining the analysis of the CPC amplitude with an updated estimate of the CPV
terms, we finally arrive to the prediction B(KL → π0µ+µ−)SM ≈ 1.5 × 10−11 for the
total branching ratio. This turns out to be composed by almost equal amounts of CPC,
indirect-CPV and direct-CPV (including the interference) terms. The present error of
this estimate is around 30%, but it is largely dominated by the parametric uncertainty
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due to the B(KS → π0ℓ+ℓ−) measurements. The irreducible theoretical uncertainty is
around 10% and can be further decreased by suitable kinematical cuts. We thus conclude
that the KL → π0µ+µ− channel is a very promising mode for future precision studies
of CP violation in the ∆S = 1 sector, with complementary virtues and disadvantages
with respect to the other golden modes, namely KL → π0νν̄ and KL → π0e+e−. As
an illustrative example of the discovery potential of the two KL → π0ℓ+ℓ− channels, we
conclude our analysis showing that – even with the present parametric uncertainties –
these two modes would yield a clear non-standard signature for the new-physics scenario
recently proposed in Ref. [12].

The paper is organized as follows: in Section 2 we discuss the kinematics and the
general amplitude decomposition of KL → π0ℓ+ℓ− decays. In Section 3 we update the
prediction of the CP-violating rate for the muon mode. Section 4 contains the main results
of this work, namely the analytical and numerical study of the KL → π0(ℓ+ℓ−)J=0 CP-
conserving amplitude. The phenomenological analysis of KL → π0µ+µ− decays, within
and beyond the SM, is presented in Section 5. The results are summarized in the Con-
clusions.

2 Amplitude decomposition and differential distribu-

tions

The most general decomposition of the KL → π0ℓ+ℓ− amplitude involves four independent
form factors (S, P , V , and A) [13]:

A(KL → π0ℓ+ℓ−) =
e2GF

(4π)2

[

mℓū(p)v(p′)S(z, ỹ) + mℓū(p)γ5v(p′)P (z, ỹ)

+ (pK + pπ)µū(p)γµv(p′)V (z, ỹ) + (pK + pπ)µū(p)γµγ5v(p′)A(z, ỹ)
]

. (2)

The two independent kinematical variables can be chosen as

z =
(p + p′)2

m2
K

, ỹ =
2

m2
K

pK ·(p − p′)

βπ(z)βℓ(z)
, (3)

where

ri =
mi

mK

, βℓ(z) =

(

1 − 4r2
ℓ

z

)1/2

, βπ(z) =
(

1 + r4
π + z2 − 2z − 2r2

π − 2zr2
π

)1/2
. (4)

The variable ỹ coincides with cos θℓ, where θℓ is the angle between KL and ℓ− spatial
momenta in the dilepton center-of-mass frame, and the two independent ranges are

4r2
ℓ ≤ z ≤ (1 − rπ)2 , −1 < ỹ ≡ cos θℓ < 1 , (5)
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With these conventions, the general expression of the differential decay rate is

d2Γ

dzdỹ
=

α2G2
Fm5

Kβπ(z)βℓ(z)

212π5

{

r2
ℓβ

2
ℓ (z)z|S(z, ỹ)|2 + r2

ℓz|P (z, ỹ)|2

+ β2
π(z)(1 − β2

ℓ ỹ
2)|V (z, ỹ)|2 +

[

β2
π(z)(1 − β2

ℓ ỹ
2) + 4r2

ℓ (2 + 2r2
π − z)

]

|A(z, ỹ)|2

+ 4r2
ℓ (1 − r2

π)Re [A(z, ỹ)∗P (z, ỹ)] + 4r2
ℓβπ(z)βℓ(z)ỹRe [V (z, ỹ)∗S(z, ỹ)]

}

.

(6)

The ỹ variable is CP-odd and leads to a strong kinematical suppression. For this
reason, it is convenient to expand the four form factors in a multipole series:

F (z, ỹ) = F0(z) + ỹF1(z) + . . . F = S, P, V, A . (7)

The CP properties of the amplitudes are the following: the odd multipoles of S and the
even multipoles of P , V and A, vanish in the limit of exact CP invariance. All short-
distance contributions to the higher multipoles are negligible, since they cannot be gen-
erated by dimension-six operators. To a good approximation, we can also neglect all the
long-distance contributions generated by two-photon amplitudes in the CPV multipoles.
As a result, we are left with five potentially interesting terms:

A0, P0 : direct CPV amplitudes of short-distance origin;

V0 : CPV amplitude which receives both short-distance (direct CPV component) and
long-distance (indirect CPV component) contributions [14, 15];

S0, V1 : CPC amplitude induced by the long-distance transition KL → π0(γγ)J=0,2 →
π0ℓ+ℓ−; with the JPC = 0++ two-photon state contributing only to S0.

1

As mentioned in the Introduction, these amplitudes turn out to be of comparable
magnitude despite they are generated by very different dynamical mechanisms. Given
the normalization in Eq. (2), the CPV short-distance multipoles are of O(Im(V ∗

tsVtd)/e
2 ∼

10−3) within the SM, V ind
0 is of O(ε ∼ 10−3) and the two-photon CPC terms are of

O(α/(4π) ∼ 10−3). We stress that these five multipoles are the only interesting terms
also beyond the SM, and that only the short-distance terms (A0, P0, V dir

0 ) could receive
sizable non-standard contributions.

The differential z distribution taking into account only the five potentially interesting
terms can be written as

dΓ

dz
=

dΓCPC

dz
+

dΓCPV

dz
, (8)

1 Note that this decomposition of the amplitude in terms of Dirac structures and ỹ multipoles, which
is quite useful to identify the dynamical origin of the various terms and their relative weight in the decay
distribution, does not correspond to a projection on |ℓ+ℓ−〉 states of definite angular momentum. Thus
the S0 term receives both contributions from JPC = 0++ and JPC = 2++ while, by construction, V1

receives only contributions from JPC = 2++.
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where

dΓCPC

dz
=

α2G2
Fm5

Kβπ(z)βℓ(z)

211π5

{

r2
ℓβ

2
ℓ (z)z|S0(z)|2 +

2

15
β2

π(z)

(

1 +
6r2

ℓ

z

)

|V1(z)|2

+
4

3
r2
ℓβπ(z)βℓ(z)Re[S0(z)V1(z)∗]

}

, (9)

dΓCPV

dz
=

α2G2
Fm5

Kβπ(z)βℓ(z)

211π5

{

r2
ℓz|P0(z)|2 +

2

3
β2

π(z)

(

1 +
2r2

ℓ

z

)

|V0(z)|2

+

[

2

3
β2

π(z)

(

1 +
2r2

ℓ

z

)

+ 4r2
ℓ (2 + 2r2

π − z)

]

|A0(z)|2

+4r2
ℓ (1 − r2

π)Re [A0(z)∗P0(z)]
}

. (10)

The asymmetric integration on ỹ give rise to the following CPV distribution

dAFB

dz
=

∫

dỹ
d2Γ

dzdỹ
sgn(ỹ) =

α2G2
F m5

Kβ2
π(z)βℓ(z)

212π5

×Re

[

V0(z)∗
(

4r2
ℓβℓ(z)S0(z) + βπ(z)

(

1 +
4r2

ℓ

z

)

V1(z)

)]

. (11)

With a proper normalization, AFB can be identified with the forward-backward or the
energy asymmetry of the two leptons.

3 The CP-violating rate

An updated discussion of the CP-violating amplitude for the electron case (ℓ = e) can
be found in Ref. [2], to which we refer for more details. Most of the ingredients of this
analysis can easily be transferred to the muon case. Following the notation of Ref. [2, 15],
the dominant indirect-CPV amplitude leads to

V ind
0 (z) = ±ε

[

aS + bSz +
W ππ

S (z)

GFm2
K

]

≈ ±ε(aS + bSz) , (12)

where the ± refers to the relative sign between this long-distance term and the short-
distance (direct-CPV) component of the vector amplitude.2 The latter is given by

V dir
0 (z) = i

4πy7V√
2α

f+(z)Imλt , (13)

where, as usual, λt denotes the CKM combination V ∗

tsVtd, f±(z) are the K → π form
factors of the s̄γµd current, and y7V,A are the Wilson coefficients of the leading flavour-
changing neutral-current (FCNC) operators [16]. Similarly, the axial-current operator

2 The separation of V ind and V dir is phase-convention dependent. We adopt the standard CKM phase
convention where, to a good approximation, we can set ε = |ε|eiπ/4.
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leads to the clean short-distance terms

A0(z) = i
4πy7A√

2α
f+(z)Imλt , (14)

P0(z) = −i
8πy7A√

2α
f−(z)Imλt . (15)

Note that, contrary to the electron case, here the pseudoscalar amplitude is not helicity
suppressed (see Eq. (10)).

Thanks to the recent NA48 results,

B(KS → π0e+e−)mee>165 MeV =
(

3.0+1.5
−1.2 ± 0.2

)

× 10−9 [3] , (16)

B(KS → π0µ+µ−) =
(

2.9+1.4
−1.2 ± 0.2

)

× 10−9 [4] , (17)

the large theoretical uncertainty about the size of the indirect-CPV amplitude has been
strongly reduced. Under the natural and mild assumption that the form factor of the
KS → π0ℓ+ℓ− amplitude is equal to f+(z), i.e. assuming (bS/aS)z = f+(z)−1 = 0.39z [15],
the combination of these two measurements leads to

|aS| = 1.2 ± 0.2 . (18)

Within the SM, the main parametric uncertainty on the direct-CPV amplitude is due to
Imλt. According to recent global CKM fits [17]:

Imλt = Im(V ∗

tsVtd)
SM−→ (1.36 ± 0.12) × 10−4 . (19)

Keeping the explicit dependence on these two main input values, and combining all the
CPV contributions, we obtain the following phenomenological expression:

B(KL → π0µ+µ−)CPV = 10−12 ×
[

3.7|aS|2 ± 1.6|aS|
(

Imλt

10−4

)

+ 1.0

(

Imλt

10−4

)2
]

. (20)

The numerical coefficients have been obtained setting y7A = −(0.68 ± 0.03)α(MZ) and
y7V = (0.73±0.04)α(MZ), corresponding to mt(mt) = 167±5 GeV and a renormalization
scale between 0.8 and 1.2 GeV [16]. Using these inputs, the error on each of the three
coefficients in Eq. (20) is below 10%. The result depends very mildly on f−, which
has been set to f−(z) = −0.14; however, the relative weight of the three terms in (20)
is different with respect to the electron case. This happens because of the rℓ terms
in Eq. (10), which enhance the axial-current direct-CPV contribution. As discussed in
Ref. [2], the preferred theoretical choice for the sign of the interference term is the positive

sign. The same conclusion has recently been reached also by Friot, Greynat and de
Rafael, who reinforced this theoretical argument with a detailed dynamical analysis of
K → πγ → πℓ+ℓ− amplitudes in the large NC limit [18].
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4 The CP-conserving rate

As discussed in the Introduction, the leading CHPT contribution to the CP-conserving
KL → π0ℓ+ℓ− amplitude is generated by two-loop diagrams of O(e4p4). The general
structure of these diagrams is indicated in Fig. 1–2. Due to the absence of local contri-
butions, the complete two-loop amplitude of O(e4p4) is finite and does not depend on
unknown coefficients.

4.1 General decomposition of the loop amplitude

From the general structure in Fig. 1, we can decompose the CPC amplitude as

A(KL → π0ℓ+ℓ−)CPC =
ie2

2

∫

ddq′

(2π)d
Aµν

γγ(p
′ − q′, p + q′) Lµν(p, p

′; q′) , (21)

where

Lµν(p, p′; q′) = ū(p)

[

γν 1

−q′/ − mℓ
γµ + γµ 1

q′/ + p/ − p′/ − mℓ
γν

]

v(p′) (22)

and Aµν
γγ is defined by the KL → π0γγ amplitude with off-shell photons:

A[KL → π0γ(ǫ1, t)γ(ǫ2, k)] = Aµν
γγ(t, k)ǫν

1ǫ
µ
2 . (23)

A strong simplification arises by the observation that the leptonic tensor obeys the Ward-
identity relations

tνL
µν = kµL

µν = 0 . (24)

This implies that we can neglect in Aµν
γγ all the manifestly off-shell terms of the type tµtν ,

kµtν , kµkν . The non-trivial Lorentz structure of Aµν
γγ is then identical to the one of the

on-shell amplitude [19, 20] and its calculation proceeds in a very similar way.
As shown in Ref. [19], employing a suitable basis for the pseudoscalar meson fields, it

is possible to reduce the number of independent diagrams contributing to the KL → π0γγ
amplitude to the four terms in Fig. 2. We note here that this structure can be further
simplified with a suitable decomposition of the K → π0P+P− amplitude, which acts as
an effective vertex in the diagrams 2a–2b. At O(p2) we can write:

A[K → π0P+(p+)P−(p−)] = i
[

a0 + a1z + a2(p
2
+ + p2

−
− 2m2

P )
]

, (25)

where z is defined as in Eq. (3) and the ai do not depend on the meson momenta. At this
order gauge invariance forces the effective vertices of the diagrams 2c–2d to be completely
determined by Eq. (25) via the minimal substitution. It is then easy to realize that the
complete sum of the four terms in Fig. 2 is equivalent to the sum of 2a–2b performed
without the off-shell term a2. We are therefore left with the calculation of only two
irreducible diagrams, with an effective K → π0P+P− vertex which does not depend on
the loop momenta:

M
(2)
π0PP (z) = a0 + a1z . (26)
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Figure 1: General decomposition of the KL → π0ℓ+ℓ− amplitude.

Figure 2: Lowest-order diagrams contributing to the KL → π0γγ amplitude in the basis
of Ref. [19].

This re-organization of the calculation leads to several advantages: i) a reduction of the
number of relevant diagrams; ii) a manifest link with the KS → ℓ+ℓ− calculation of
Ref. [11]; iii) the possibility to include a well-defined class of higher-order contributions
(see e.g. Ref. [21]). As we shall show later on, the latter step is achieved in the case of

the dominant pion loops by the replacement of M
(2)
3π (z) with the K → π0π+π− amplitude

determined by experiments.
The explicit integration over the P -meson loop in Aµν

γγ , namely

Aµν
γγ(p

′ − q′, p + q′)(P ) = −e2M
(2)
π0PP (z)

∫

ddq

(2π)d

(2q − k)µ(2q + t)ν − gµν(q2 − m2
P )

[(q + t)2 − m2
P ][(q − k)2 − m2

P ][q2 − m2
P ]

,

8



leads to

A(KL → π0ℓ+ℓ−)
(P )
CPC = − e4

16π2
M

(2)

π0PP (z)

×
∫ 1

0

dx

∫ 1−x

0

dy

∫

ddq′

(2π)d

u(p)γν(−q′/ − mℓ)γ
µv(p′)

[(q′)2 − m2
ℓ ](q

′ + p)2(q′ − p′)2

×
[

4xy

∆(x, y)
tµkν +

−2xy(zm2
K − t2 − k2) + y(2y − 1)t2 + x(2x − 1)k2

∆(x, y)
gµν

]

,

(27)

where

∆(x, y) = m2
P + iǫ − xy(zm2

K) + t2(−1 + x + y) + k2(−1 + x + y) . (28)

4.2 Complete analytical expression and numerical integration

The second loop integration is definitely more involved, but can still be expressed in a
compact way in terms of four Feynman parameters. Using the equation of motion on the
external lepton fields we can write

A(KL → π0ℓ+ℓ−)
(P )
CPC =

α2

2π2
M

(2)
π0PP (z)

mℓū(p)v(p′)

zm2
K

I
(

r2
l

z
,
r2
P

z

)

, (29)

I (a, b) =

∫ 1

0

dx

∫ 1−x

0

ydy

∫ 1

0

dw

∫ 1

0

du
1

α + βu − iε

×
{

(2x + 2y − 1) [1 + u (1 − w)] − x

1 + uγ + iε

}

, (30)

where

α = w [b + y (y − 1)] , γ = −1 + w
x (1 − x) − b

(1 − x − y) (x + y)
,

β = wy

(

1 − wx

x + y

)

(1 − x − y) + a (1 − w)2 (x + y) (1 − x − y) . (31)

The notation of Eqs. (30) and (31) has been chosen in order to show the perfect analogy
and the agreement with the results of Ref. [11], in the appropriate kinematical limit. As
discussed by Ecker and Pich, the integral (30) has three possible absorptive cuts: the
γγ cut, and the PP and PPγ cuts (both open only for b < 1/4). The real contribution
associated to the double PP–γγ cut turns out to be vanishing.
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Figure 3: Behavior of I(m2
µ/M2, m2

π/M2) as a function of M (in MeV).

These analytic properties become manifest performing the integration over the u vari-
able in Eq. (30). This leads to

Re I(a, b) =

∫ 1

0

dx

∫ 1−x

0

ydy

∫ 1

0

dw

{

x

αγ − β
log

∣

∣

∣

∣

α + β

α (1 + γ)

∣

∣

∣

∣

+
2x + 2y − 1

β

(

1 − w +

(

1 − α

β
(1 − w)

)

ln

∣

∣

∣

∣

α + β

α

∣

∣

∣

∣

)}

, (32)

Im I(a, b) = π

∫ 1

0

dx

∫ 1−x

0

ydy

∫ 1

0

dw
2x + 2y − 1

2β

(

1 − α

β
(1 − w)

)( |α + β|
α + β

− |α|
α

)

+ lim
ε→0

x (αγ − β)

(αγ − β)2 + ε2

1

2

( |α + β|
α + β

− |α|
α

+
|1 + γ|
1 + γ

− 1

)}

. (33)

The above representation, which holds independently of the possible signs of α, β and
γ, takes into account all the discontinuity prescriptions and is suitable for numerical
integration. This last step is actually quite delicate because, though their combination
is finite, both the PP and the PPγ cuts are infrared divergent (the electron case is
especially difficult since collinear singularities are much stronger). This means that large
cancellations occur between the various terms of I(a, b). We used a numerical integration
routine based on VEGAS [22], implemented in Mathematica [23] on which we relied for
preventing loss of numerical significance. The results are shown in Figs. 3–4 for P = π
(where M < 0 should be understood as i |M |). The behavior for P = K is entirely
determined by the γγ cut and it is rather smooth (as can be guessed from Figs. 3–4 below
2mπ).
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Figure 4: Behavior of I(m2
e/M

2, m2
π/M2) as a function of M (in MeV).

The values at z = 1, relevant for KS → π+π− → γγ → ℓ+ℓ−, are

I (r2
e , r

2
π) = 2.11 − 40.41i (±0.15) ,

I
(

r2
µ, r

2
π

)

= −2.821 + 1.216i (±0.001) ,
(34)

which are compatible with the figures quoted in Ref. [11]. To further check our results, we
have taken advantage of the fact that A(J0 (s) → π0ℓ+ℓ−)CPC satisfies an unsubtracted
dispersion relation. In particular, the reduced amplitude I (M2) ≡ I(m2

ℓ/M
2, m2

P /M2)
obeys the relation

Re
I (M2)

M2
=

P

π

∫

∞

0

ds

s − M2
Im

I (s)

s
. (35)

After having computed the imaginary part over a large range of s from Eq. (33), we ob-
tained a very good agreement between the real part values found by numerical integration
of (35) or directly from (32), for both M2 > 0 and M2 < 0. This check is particularly
significant in the region M2 < 0, where the integration of (32) is stable, being singularity-
free, while (35) remains very sensitive to the cancellations among PP and the PPγ cuts
in Im I(s).

4.3 Total and differential rate, and inclusion of higher-order

terms

Replacing the O(p2) amplitude M
(2)

π0PP (z) in Eq. (29) with the following parameterization

M
(2)

π0PP (z) → G8m
2
KaP (z) , (36)
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Constant Chiral Dalitz
aπ(z) −0.362 z − r2

π −0.46 + 2.44z − 0.95z2

aK(z) 0 z − r2
π − 1 −

Table 1: Phenomenological functions aP (z) used in the KL → π0P+P− vertices.

No KK Chiral KK
Constant ππ Chiral ππ Dalitz ππ Dalitz ππ

µ+µ− BCPC 3.48 × 10−12 2.26 × 10−12 2.62 × 10−12 2.81 × 10−12

Rγγ 4.15 × 10−6 3.80 × 10−6 3.58 × 10−6 3.66 × 10−6

Rabs 81% 79% 77% 84%
e+e− BCPC 2.28 × 10−14 1.48 × 10−14 1.75 × 10−14 1.80 × 10−14

Rγγ 2.73 × 10−8 2.47 × 10−8 2.39 × 10−8 2.34 × 10−8

Rabs 27% 28% 30% 28%

Table 2: Branching ratio, ratio Rγγ and absorptive component, Rabs = Γabs
CPC/ΓCPC, for

the two KL → π0ℓ+ℓ− modes, as obtained with different phenomenological expressions of
aπ,K(z).

where G8 = 9.1 × 10−6 GeV2, the CPC differential rate becomes

dΓCPC

dz
=

G2
8m

5
Kα4

512π7

r2
ℓ

z
βπ(z)β3

ℓ (z)

∣

∣

∣

∣

aπ(z)I
(

r2
ℓ

z
,
r2
π

z

)

− aK(z)I
(

r2
ℓ

z
,
1

z

)
∣

∣

∣

∣

2

. (37)

We have evaluated this expression using several parameterizations of aP (z), reported in
Table 1. The constant one corresponds to the first approximation of Ref. [10]. The chi-
ral forms, deduced from the O (p2) amplitudes for K → π0π+π− and K → π0K+K−,
are the expressions which yield to the complete O(p4) calculation of the CPC rate. Fi-
nally, the Dalitz expression is obtained from the experimental fit of the KL → π0π+π−

amplitude [24, 25]:

A
(

KL → π+π−π0
)

= G8m
2
Ka(z) + O

{

[pK · (p+ − p−)]2
}

,

a(z) = 0.38 + 0.13Y0 − 0.0059Y 2
0 , Y0 =

1

r2
π

(

z − r2
π − 1

3

)

(38)

neglecting the small O{[pK · (p+ − p−)]2} terms. The resulting branching ratios for the
muon and electron modes are shown in Table 2. The differential rate dΓ/dz with or
without the kaon loops and with the Dalitz parametrization for aπ is shown in Fig. 5. As
can be seen, the impact of the charged kaon loops is quite small.

Of special interest is the ratio Rγγ , defined in Eq. (1), with the two widths computed
in terms of the same aP (z) vertex. Concerning the two-photon mode, this means [25]

Γ
(

KL → π0γγ
)

=
G2

8m
5
Kα2

(4π)5

∫ (1−rπ)2

0

dz βπ(z)
∣

∣aπ(z)Iγγ

(

z/r2
π

)

− aK(z)Iγγ(z)
∣

∣

2
, (39)
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Figure 5: Differential rate for the CPC contribution, in arbitrary units, including (plain)
and excluding (dashed) the K+K− loop.

with the standard loop function Iγγ given in Ref. [19].
The phenomenological functions aP (z) act as a modulation of both the ℓ+ℓ− and γγ

spectra, and the four cases in Table 2 span a large range of behaviors (this is why we kept
the constant aP , even if this choice is clearly in conflict with chiral symmetry and the
experimental KL → π0γγ spectrum). Interestingly, the dynamics of the processes is such
that KL → π0γγ and KL → π0ℓ+ℓ− amplitudes react in a very similar way to changes
in the distribution of the invariant mass of the electromagnetic system (i.e. the γγ or
ℓ+ℓ− pairs). As a result, despite the individual variations of the two widths, the ratio Rγγ

remains very stable. Note that this conclusion is not induced by a complete dominance of
the 2γ-cut in the KL → π0ℓ+ℓ− amplitude: ππ and ππγ cuts have sizable contributions,
and the stability of Rγγ holds also for the KL → π0e+e− amplitude, which is dominated
by the dispersive part.

As is well-known, none of the parameterizations in Table 1 for aP is able to reproduce
both rate and spectrum of the KL → π0γγ decay, and some additional O (p6) genuine
local terms need to be included (see e.g. Refs. [2, 26] for a recent discussion). As shown
in Ref. [2], recent data point toward O (p6) counterterms whose bulk values can be inter-
preted in terms of vector-meson resonances. The overall effect of these extra contributions
is an enhancement of the KL → π0γγ rate, with a spectrum which remains very similar
to what we have called the Dalitz structure. Unfortunately, this information cannot be
directly translated into a complete O (p6) analysis of the KL → π0ℓ+ℓ− amplitude. How-
ever, given the stability of Rγγ in Table 2, we expect that Rγγ will not change substantially
also with the inclusion of these extra O (p6) terms. This expectation is further reinforced
by the observation that the KL → π0γγ spectrum does not show significant evidences
of two-photon states with J 6= 0 [2], and by the large size of Rabs in Table 2. Since we
cannot fully determine the structure of the KL → π0ℓ+ℓ− amplitude at O (p6), we shall
attribute to our final estimate of Rγγ a conservative 30% error, dictated by näıve chiral

13



power counting. For the interesting muon mode, this means

Rγγ(ℓ = µ) = (3.7 ± 1.7) × 10−6 , (40)

where the central value has been obtained from the last column in Table 2 (Dalitz expres-
sion for the pion loops and inclusion of the kaon loops).

In order to obtain the predictions of the CPC KL → π0ℓ+ℓ− widths, the estimates
of Rγγ need to be combined with the experimental results on B (KL → π0γγ). The two
most recent determinations

B
(

KL → π0γγ
)exp

=

{

(1.36 ± 0.03stat ± 0.03syst ± 0.03norm) × 10−6 [5]
(1.68 ± 0.07stat ± 0.08syst) × 10−6 [6]

(41)

leads to the average B (KL → π0γγ)
exp

= (1.42±0.13)×10−6. Using this averaged result,
we finally obtain

B (KL → π0e+e−)
0++

CPC = (3.4 ± 1.0) × 10−14 ,

B (KL → π0µ+µ−)
0++

CPC = (5.2 ± 1.6) × 10−12 .
(42)

Given the strong helicity suppression, the result in Eq. (42) is not the dominant CPC
contribution for the electron mode. As shown in Ref. [2], the constraints on the KL →
π0γγ diphoton spectrum (at low invariant mass) leave room for a 2++ CPC branching
ratio, in the electron channel, around or below the 10−12 level. Because of the phase-space
and angular-momentum suppression, this translates into a 10−14 contribution from 2++

in the muon mode, which can thus be safely neglected.

5 Phenomenological analysis

The total branching ratios for the two modes can be written as

B(KL → π0ℓ+ℓ−) =

(

Cℓ
mix ± Cℓ

int

(

Imλt

10−4

)

+ Cℓ
dir

(

Imλt

10−4

)2

+ Cℓ
CPC

)

× 10−12, (43)

with the following sets of coefficients (obtained by combining the results of the previous
two sections and the analysis of Ref. [2] for KL → π0e+e−):

Ce
mix = (15.7 ± 0.3)|aS|2 , Cµ

mix = (3.7 ± 0.1)|aS|2 ,
Ce

int = (6.2 ± 0.3)|aS| , Cµ
int = (1.6 ± 0.1)|aS| ,

Ce
dir = 2.4 ± 0.2 , Cµ

dir = 1.0 ± 0.1 ,
Ce

CPC ≈ 0 , Cµ
CPC = 5.2 ± 1.6 ,

(44)

where |aS| = 1.2±0.2 and (Im λt/10−4)SM = 1.36±0.12. The Standard Model predictions
are then

B(KL → π0e+e−) =
(

3.7+1.1
−0.9

)

× 10−11
[ (

1.7+0.7
−0.6) × 10−11

) ]

,
B(KL → π0µ+µ−) = (1.5 ± 0.3) × 10−11

[

(1.0 ± 0.2) × 10−11)
]

,
(45)
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Figure 6: Differential rate for KL → π0µ+µ−, in arbitrary units, for destructive (left)
and constructive (right) interference. In each plot the three curves correspond to CPC
(dashed), CPV (dotted) and total contribution (full).

for positive [negative] interference. As already mentioned, several theoretical arguments
point towards the constructive interference scenario [2, 18]. We report the destructive
solution only for completeness, since we cannot prove yet in a model-independent way
that this solution is ruled out.

The total differential rate and its CPC and CPV components are shown in Fig. 6 for
the muon mode (the electron case is less interesting, being completely dominated by the
CPV part). Although the differential CPC component is not predicted as accurately as
the total one (by means of Rγγ), it clearly emerges that the low µ+µ− invariant mass
region is dominated by the CPV component. This conclusion can be considered as a
model-independent statement, at least at a qualitative level: it follows from the näıve
distribution of |µ+µ−〉 final states with JCP = 1±± (CPV) or 0++ (CPC), and it is
reinforced by the experimental evidence of the KL → π0γγ diphoton spectrum [5, 6].
For this reason, in future high-statistics experiments a cut of the high-z region could be
used as a powerful tool to reduce and control the CPC contamination of the signal. At a
quantitative level, employing the Dalitz shape of the spectrum, we find that cutting the
events with mµµ > 2mπ let us suppress about 90% of the CPC contribution, while the
interesting CPV term is reduced only by 40% (i.e. the CPC contamination of the total
rate drops to less than 10%).

The different shape of CPC and CPV spectra implies a suppression of their interference
in the CPV distributions, such as the forward-backward (FB) asymmetry. In particular,
we find that the normalized FB asymmetry integrated over the full spectrum do not
exceed the O(10%) level. Thus we do not consider this observable particularly promising
for near-future (low-statistics) experiments. On the other hand, it is clear that in a
long term (high-statistics) perspective this observable, as well as the other asymmetries
discussed in Ref. [27], would provide a useful tool to reduce the theoretical error on the
long-distance components of the KL → π0µ+µ− amplitude.
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Figure 7: Central values of the two B(KL → π0ℓ+ℓ−) for various values of Im λt. Negative
values stand for destructive interference (see text).

The present experimental limits on the branching ratios of the two modes can be
translated into bounds on Im λt, although we are clearly far from the level necessary to
perform precision tests of the SM. We find

B (KL → π0e+e−) < 2.8 × 10−10 [28] → |Im λt| < 1.3 × 10−3 ,
B (KL → π0µ+µ−) < 3.8 × 10−10 [29] → |Im λt| < 2.1 × 10−3 ,

(46)

where the results have been obtained without any assumption on the sign of the interfer-
ence. It is worth to stress that the limit derived from the muon mode is quite close to the
electron one. This happens because the phase-space suppression of the former is partially
compensated by the enhancement of the helicity-suppressed terms in the (direct-CPV)
axial-current contribution.

5.1 New-physics sensitivity

As can be deduced by the comparison of Eq. (46) and Eq. (45), we still have to wait a few
years before any experiment will be able to probe the two KL → π0ℓ+ℓ− modes at the SM
rate. However, we recall that these two transitions are particularly sensitive to physics
beyond the SM and their branching ratios could well be modified (and possibly enhanced)
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Figure 8: 25%, 50% and 75% confidence-level regions for the Standard Model (assuming
positive interference) and the enhanced-electroweak-penguin model of Ref. [12], taking
into account all the present uncertainties.

with respect to their SM expectations (see e.g. Refs. [30] and references therein). In such
a case, the combined information on the two rates would provide a very powerful tool to
identify a deviation from the SM, and also to distinguish various new-physics scenarios.

To illustrate the combined discovery potential of the two modes, it is useful to draw
the curve in the B(KL → π0µ+µ−)– B(KL → π0e+e−) plane obtained by a variation of
Im λt, as shown in Fig. 7. The distance between the positive and negative Im λt branches
is generated by the different weights of the CPV contributions for the two modes, which in
turn arise from the helicity-suppressed terms proportional to P0(z) and A0(z) in Eq. (10).
In the limit where we neglect all errors but the one on Im λt, as done in Fig. 7 for
illustration, the SM corresponds to one small segment (or two considering also the negative
interference) of this curve. Any other point along the curve corresponds to non-standard
scenarios where the new-physics effect can be re-absorbed into a re-definition of Im λt.
Finally, the region outside the curve corresponds to non-standard scenarios with different
weights of vector and axial-vector contributions.

To discuss a concrete example, we shall consider in particular the scenario with en-
hanced electroweak penguins recently discussed in Ref. [12]. In this framework new
physics does not modify the value of Im λt, but leads to a modification of the short-
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distance Wilson coefficients ȳ7V,A ≡ y7V,A/α(MZ). In particular, their values are changed
to (ȳ7A, ȳ7V ) = (−3.2, 0.9), whereas the SM case corresponds to (−0.68, 0.73). Given the
dependence of Cℓ

int,dir from ȳ7V,A

Ce
int = 8.91 ȳ7V |aS|, Ce

dir = 2.67 (ȳ2
7V + ȳ2

7A) ,
Cµ

int = 2.12 ȳ7V |aS|, Cµ
dir = 0.63 (ȳ2

7V + ȳ2
7A) + 0.85 ȳ2

7A ,
(47)

we can easily translate this information into the corresponding predictions for the two
branching ratios:

B(KL → π0e+e−)NP
EWP = (9.0 ± 1.6) × 10−11 ,

B(KL → π0µ+µ−)NP
EWP = (4.3 ± 0.7) × 10−11 .

Both decay widths turn out to be dominated by the direct CPV component, with a
small (20%–30%) dependence from the interference sign. Since the helicity suppressed
effects are proportional to the enhanced ȳ7A, the relative deviation with respect to the
SM prediction is larger in the muon case. As shown in Fig. 8, this scenario could clearly
be distinguished from the SM case even taking into account all the present parametric
uncertainties. Note that, as a consequence of the non-standard axial/vector ratio, the
central point of this new-physics scenario is outside the Im λt curve.

6 Conclusions

We have presented a new comprehensive study of the rare FCNC process KL → π0µ+µ−.
Our main task has been a systematic analysis of the two-photon CP-conserving contri-
bution, which represents the most delicate ingredient necessary to obtain a reliable SM
prediction for the total decay rate. By means of an explicit two-loop calculation within
CHPT, we have shown that this contribution can be predicted with reasonable accuracy
in terms of the KL → π0γγ width. Taking into account the experimental data on the
latter [5, 6] and the recent observation of the KS → π0ℓ+ℓ− transitions [3, 4], we have
been able to present the first complete SM prediction for the total branching ratio:

B(KL → π0µ+µ−)SM = (1.5 ± 0.3) × 10−11 . (48)

This is composed by approximately equal CP-conserving, indirect-CP-violating and direct-
CP-violating components (including the interference). The sizable uncertainty which af-
fects this prediction is a parametric error which reflects the present poor experimental
knowledge of the KS → π0ℓ+ℓ− rates. The irreducible theoretical error, due to the long-
distance CP-conserving amplitude, is only at the 10% level and, as we have shown, can
be further reduced by suitable kinematical cuts.

Beside the good theoretical control of the decay rate, this channel is particularly
interesting because of a different short-distance sensitivity compared to the other golden
rare KL decays, namely KL → π0e+e− and KL → π0νν̄. As we have shown, the helicity-
suppressed terms distinguish the relative weights of vector- and axial-current contributions
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in KL → π0e+e− and KL → π0µ+µ−. As a result, the combination of the two decay widths
could provide a very powerful tool to falsify the SM and also to distinguish among different
new-physics models.

In summary, the KL → π0µ+µ− decay represents a very interesting candidate for future
precision studies of CP violation and new physics in ∆S = 1 transitions. This mode has
complementary virtues and disadvantages compared to the other rare K decays, and it
should be seriously considered in view of future high-statistics experiments in the kaon
sector.
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